

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Hesaraghatta Main Road, Chimney Hills, Chikkabanavara Post, Bengaluru - 560090

## **Department of Mechanical Engineering**

# TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES (21MAT31)

| CO Number | Course Outcome                                                                                                                                                           | Blooms' Level |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|           | At the end of the course, student should be able to                                                                                                                      |               |
| CO1       | To solve ordinary differential equations using Laplace transform.                                                                                                        | L1, L2, L3    |
| CO2       | Demonstrate the Fourier series to study the behaviour of periodic functions and their applications in system communications, digital signal processing and field theory. | L1, L2, L3    |
| CO3       | To use Fourier transforms to analyze problems involving continuous-time signals and to apply Z-Transform techniques to solve difference equations.                       | L1, L2, L3    |
| CO4       | To solve mathematical models represented by initial or boundary value problems involving partial differential equations.                                                 | L1, L2, L3    |
| CO5       | Determine the extremals of functionals using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis.                     | L1, L2, L3    |



(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Hesaraghatta Main Road, Chimney Hills, Chikkabanavara Post, Bengaluru - 560090

# **Department of Mechanical Engineering**

# METAL CASTING FORMING & JOINING PROCESS (IPCC) (21ME32)

| CO Number | Course Outcome                                                                                                                                                | Blooms' Level |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|           | At the end of the course, student should be able to                                                                                                           |               |
| CO1       | Select appropriate primary manufacturing process and related parameters for obtaining initial shape and size of Components.                                   | L1 & L2       |
| CO2       | Design and develop adequate tooling linked with casting, welding and forming operations.                                                                      | L1 & L2       |
| CO3       | Appreciate the effect of process parameters on quality of manufactured components.                                                                            | L1 & L2       |
| CO4       | Demonstrate various skills in preparation of molding sand for conducting tensile, shear and compression tests using Universal sand testing machine.           | L1 & L2       |
| CO5       | Demonstrate skills in preparation of forging models involving upsetting, drawing and bending operations. Demonstrate skills in preparation of Welding models. | L1 & L2       |



(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Hesaraghatta Main Road, Chimney Hills, Chikkabanavara Post, Bengaluru - 560090

# **Department of Mechanical Engineering**

# MATERIAL SCIENCE AND ENGINEERING (IPCC) (21ME33)

| CO Number | Course Outcome                                                                                                                              | Blooms' Level |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|           | At the end of the course, student should be able to                                                                                         |               |
| CO1       | Understand the atomic arrangement in crystalline materials and describe the periodic arrangement of atoms in terms of unit cell parameters. | L1 & L2       |
| CO2       | Understand the importance of phase diagrams and the phase transformations.                                                                  | L1 & L2       |
| CO3       | Know various heat treatment methods for controlling the microstructure.                                                                     | L1 & L2       |
| CO4       | Correlate between material properties with component design and identify various kinds of defects.                                          | L1 & L2       |
| CO5       | Apply the method of materials selection, material data and knowledge sources for computer-aided selection of materials.                     | L1 & L2       |



(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Hesaraghatta Main Road, Chimney Hills, Chikkabanavara Post, Bengaluru - 560090

## **Department of Mechanical Engineering**

#### **THERMODYNAMICS**

(21ME34)

### 1. Course Outcomes

| CO Number | Course Outcome                                                                          | Blooms' Level |
|-----------|-----------------------------------------------------------------------------------------|---------------|
|           | At the end of the course, student should be able to                                     |               |
| CO1       | Describe the fundamental concepts and principles of engineering thermodynamics.         | L1, L2, L3    |
| CO2       | Apply the governing laws of thermodynamics for different engineering applications.      | L1, L2, L3    |
| CO3       | Analyse the various thermodynamic processes, cycles and results.                        | L1, L2, L3    |
| CO4       | Interpret and relate the impact of thermal engineering practices to real life problems. | L1, L2, L3    |
|           |                                                                                         |               |

Faculty Signature HOD Signature



(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Hesaraghatta Main Road, Chimney Hills, Chikkabanavara Post, Bengaluru - 560090

## **Department of Mechanical Engineering**

# COMPLEX ANALYSIS, PROBABILITY AND LINEAR PROGRAMMING (21MATME41)

| CO Number | Course Outcome                                                                                                                   | Blooms' Level |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|---------------|
|           | At the end of the course, student should be able to                                                                              |               |
| CO1       | Use the concepts of an analytic function and complex potentials to solve the problems arising in fluid flow.                     | L1, L2, L3    |
| CO2       | Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing. | L1, L2, L3    |
| CO3       | Apply discrete and continuous probability distributions in analyzing the probability models arising in the engineering field.    | L1, L2, L3    |
| CO4       | Analyze and solve linear programming models of real-life situations and solve LPP by the simplex method.                         | L1, L2, L3    |
| CO5       | Learn techniques to solve Transportation and Assignment problems.                                                                | L1, L2, L3    |



(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Hesaraghatta Main Road, Chimney Hills, Chikkabanavara Post, Bengaluru - 560090

# **Department of Mechanical Engineering**

# MACHINING SCIENCE AND JIGS & FIXTURES (IPCC) (21ME42)

| CO Number | Course Outcome                                                                                     | Blooms' Level |
|-----------|----------------------------------------------------------------------------------------------------|---------------|
|           | At the end of the course, student should be able to                                                |               |
| CO1       | Demonstrate the Conventional CNC machines and advanced manufacturing process operations            | L1 & L2       |
| CO2       | Determine tool life, cutting force, and economy of the machining process.                          | L1 & L2       |
| CO3       | Analyze the influence of various parameters on machine tools' performance.                         | L1 & L2       |
| CO4       | Select the appropriate machine tools and process, the Jigs, and fixtures for various applications. | L1 & L2       |
|           |                                                                                                    |               |



(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Hesaraghatta Main Road, Chimney Hills, Chikkabanavara Post, Bengaluru - 560090

# **Department of Mechanical Engineering**

# FLUID MECHANICS (IPCC) (21ME43)

| CO Number | Course Outcome                                                                                      | Blooms' Level |
|-----------|-----------------------------------------------------------------------------------------------------|---------------|
|           | At the end of the course, student should be able to                                                 |               |
| CO1       | Understand the basic principles of fluid mechanics and fluid kinematics                             | L1, L2, L3    |
| CO2       | Acquire the basic knowledge of fluid dynamics and flow measuring instruments                        | L1, L2, L3    |
| CO3       | Understand the nature of flow and flow over bodies and the dimensionless analysis                   | L1, L2, L3    |
| CO4       | Acquire the compressible flow fundamental and basics of CFD packages and the need for CFD analysis. | L1, L2, L3    |
| CO5       | Conduct basic experiments of fluid mechanics and understand the experimental uncertainties.         | L1, L2, L3    |



(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Hesaraghatta Main Road, Chimney Hills, Chikkabanavara Post, Bengaluru - 560090

## **Department of Mechanical Engineering**

#### **MECHANICS OF MATERIALS**

(21ME44)

### 1. Course Outcomes

| CO Number | Course Outcome                                                                               | Blooms' Level |
|-----------|----------------------------------------------------------------------------------------------|---------------|
|           | At the end of the course, student should be able to                                          |               |
| CO1       | Understand simple, compound, thermal stresses and strains their relations and strain energy. | L1, L2, L3    |
| CO2       | Analyse structural members for stresses, strains and deformations.                           | L1, L2, L3    |
| CO3       | Analyse the structural members subjected to bending and shear loads.                         | L1, L2, L3    |
| CO4       | Analyse shafts subjected to twisting loads.                                                  | L1, L2, L3    |
| CO5       | Analyse the short columns for stability.                                                     | L1, L2, L3    |

Faculty Signature HOD Signature